

A complete product line based on UBE U-varnish technology

High-performance

Competitive advantage

U – P i a · · · Creating UTOPIA with UBE

"UPIA®" is a complete Polyimide varnish product line based on UBE's "U-varnish" brand, with new performance varnish grades developed from UBE's extensive experience and Superior technology.

UBE provides value and delivers solutions for a variety of applications through exceptional customer support.

Polyimide varnish "UPIA®" is a polyamic acid precursor solution of polyimide (High-performance engineering plastics).

It is the base for polyimide coated films which feature non-soluble and non-melting properties, high heat, chemical resistance, and electric insulation properties achieved through high temperature curing and imidization.

Proposed Application and grade

I want to use the standard U-varnish.

I want high heat resistant varnish and want to use at high temperature.

--Base grade--

Heat-resistant varnish UPIA - AT (U-Varnish-A)

Industry leader delivering high performance with easy processability.

--High-temperature process tolerance--

High heat-resistant varnish

UPIA-ST (U-Varnish-S)

Designed for high-temperature processing and elevated use temperatures.

Characteristics of "UPIA®"

(1) Composition of UBE Polyimide

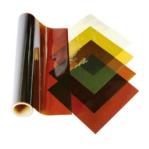
Original composition polyimide

"UPIA®" is a polyimide precursor formed from UBE's proprietary "BPDA (Biphenyl tetracarboxylic dianhydride)" monomers. This is the original UBE varnish. UBE polyimide film "UPILEX®" is produced using this unique UBE polyimide precursor giving it various and unique advantages.

Polyimide coated film derived from the varnish of the same graded has the same properties.

-- Features of UBE Polyimide film [**UPILEX**] --

High heat resistance---

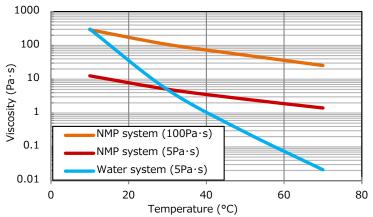

It can be used in high-temperature processes just below 500°C. This exceeds industry standard operating temperatures around 300°C.

High mechanical properties---

Upilex has excellent wear resistance and toughness. This allows use of thinner films compared to other polyimide materials, in applications where strength is critical.

Chemical resistance---

It has excellent chemical resistance to organic solvents, gasoline, automotive oil, alkalis, acids etc..



(2) General properties of "UPIA®"

Property	Category	Heat-resistant/High heat-resistant (Existing grade) For secondary battery binder		Measurement condition	
	Unit	UPIA-AT/ST (U-Varnish-A/S)	UPIA-LB	Condition	
Solvent	-	*NMP	*NMP, Water		
Solid content	Wt%	17-19	10-30	350°C, 30min	
Density	×10³kg/m³	1.10-1.11	1.05-1.15	25°C	
Solution viscosity	Pa∙s	5-100	0.1-10	E-type, 30°C	

*N-methyl-2-pyrrolidone

(3) Temperature dependence of solution viscosity

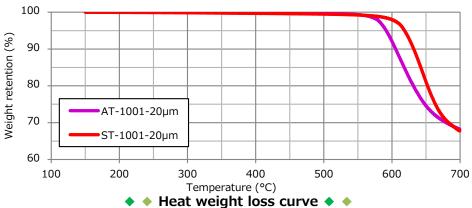
Temperature dependence of solution viscosity

(4) Concentration dependence of solution viscosity

Easy viscosity adjustment "UPIA $^{\otimes}$ " can be used at any desired concentration by diluting it with anhydrous NMP or DMAc (N, N-dimethylacetamide).

(5) Storage stability

Preservation stability


"UPIA®" has superior storage stability compared to conventional polyimide varnishes. It exhibits a very low increase in viscosity at room temperature, while conventional polyimide varnish must be refrigerated or frozen.

Coating Properties

(1) Thermal properties

Nonmelting/ High heat resistance Polyimide film obtained from "UPIA®" exhibits a high thermal decomposition temperature. Especially, "UPIA®-ST(U-Varnish-S)" has a thermal decomposition temperature above 550°C, so it does not soften, fluidize, or decompose under use temperatures and it is able to be used in high-temperature processes. In addition, the polyimide coating has excellent dimensional stability even at high temperatures.

Property		Unit	UPIA-AT (U-Varnish-A) 1001		UPIA-ST (U-Varnish-S) 1001		Measurement condition/
	Thickness		20	50	20	50	Method
Solv	Solvent		NMP		NMP		
Solid content		wt%	18.0±1.0		18.0±1.0		350°C, 30min
Solution viscosity		Pa∙s	5±1		5±1		E-type, 30°C
Heat treatment highest temp.		°C	350		450		
Ś	Glass-transition temp. Tg	°C	274	278	322	324	Dynamic viscoelasticity
Film properties	5% weight reduction temp.	°C	592	599	619	620	TGA
prop	Thermal linear expansion coefficient (50-200°C)	ppm/K	33	29	3	8	Fine linear dilatometer

(2) Mechanical properties

Resists abrasion/ High tensile strength Polyimide coating derived from "UPIA®" demonstrates excellent mechanical properties, especially high tensile strength and abrasion resistance.

	Property	Unit	UPIA-AT (U-Varnish-A) 1001		UPIA-ST (U-Varnish-S) 1001		Measurement Method
	Thickness	μm	20	50	20	50	
ies	Tensile strength	MPa	229	238	526	482	ASTM D882
Film	Elongation	%	92	99	35	40	ASTM D882
_ g	Tensile modulus	GPa	3.7	3.7	9.8	9.3	ASTM D882

(3) Electric properties

High insulation properties

Polyimide coat obtained from "UPIA®" delivers a high electrical reliability, such as insulation.

Property	Unit	UPIA-AT (U-Varnish-A) 1001		UPIA-ST (U-Varnish-S) 1001		Measurement condition/ Method
Thickness	μm	20	50	20	50	Fiction
Breakdown voltage	kV	7.7	10.3	7.0	10.2	ASTM D149
Volume resistivity	Ω·m	>1014	>1014	>1014	>1014	ASTM D257
Surface resistance	Ω	>1016	>1016	>1016	>1016	ASTM D257

(4) Chemical-Resistant Properties

High chemical resistance

"UPIA®" has excellent resistance to common organic solvents and metallic salt solutions, and it also demonstrates better resistance to acids and alkalis than conventional products.

In addition, it delivers superior performance when it comes to abrasion resistance and non-flammability.

◆ ◆ Chemical resistance data of UPIA-AT-1001(U-Varnish-A) ◆ ◆

	Characteristic value (Thickness: 20µm)					
Chemical	Strength retention rate (%)	Elongation retention rate (%)				
Methylene chloride	95	96				
Chloroform	88	90				
Trichloroethylene	93	102				
Methyl ethyl ketone	92	89				
Ethanol	89	100				
Xylene	99	84				
m-Cresol	90	90				
N-methyl-2-pyroridon	98	107				
Glacial acetic acid	91	108				
10% hydrochloric acid	91	82				
10% sulfuric acid	93	94				
2% sodium hydroxide	99	91				
10% sodium hydroxide	82	81				

Measurement condition: 30°C, 24h Dipping

Usage (Examples)

Washing and drying (The coating material)

Method Example: Ultrasonic cleaning method Solvent cleaning method

Detergent method

Coating of "UPIA®" (Room temperature)

Heating (Drying/Imidization)

Method Example: Spin coating

Slit coating Dip coating Spray coating Applicator etc.

Method Example: Hot air drying method

Vacuum heating drying method

Packing and handling precautions

(1) Standard Packing

Packing	18kg can		
	5kg can		

(2) Handling precautions

- •"UPIA®" is extremely stable when properly stored. Please keep it in a cool, dark place when storing for a long period of time. Always keep the lid tightly sealed when storing to prevent hydrolysis due to moisture absorption. Immediately wipe off any varnish that comes into contact with the skin and then thoroughly wash the affected area.
- Please refer to Safety Data Seat (SDS) before use.
- "UPIA®" NMP based systems are classified as a Type 3 Petroleum Substance, Type 4 Hazardous Material under Japan's Fire Defense Law (designated quantity: 2,000 liters).

(3) Content Statement

The content provided is based on materials, data and information currently available. No guarantee is made with regard to content, physical properties or hazardous and harmful effects. Furthermore, handling precautions relate to normal handling. In unique situations requiring special handling, please use safety measures appropriate for the application and process.

Polyimide Business Department

Seavans North Bldg, 1-2-1, Shibaura, Minato-Ku, Tokyo, Japan, 105-8449

TEL: +81(3)5419-6180 FAX: +81(3)5419-6258

<URL> https://www.ube.com/upilex/en/