# The UBE Group's Main Environmentally Friendly Products



# **Polyimide**

Polyimide resins, which are highly resistant to heat, chemicals, etc., are utilized in a variety of electrical appliances and other products.

### **Reason for selection**

Chip On Film (COF) for use in TVs: Helps reduce energy consumption. Flexible solar cell film/Anode binder for lithium-ion batteries/Biphenyltetracarboxylic dianhydride (BPDA) for insulation in EV motors: Contributes to reducing CO<sub>2</sub> emissions.

Water-based polyimide varnish (organic solvent-free): Contributes to reducing volatile organic compound (VOC) emissions.



## **Separation membranes**

Gas separation membranes containing polyimide hollow fibers enable the efficient extracting of specific gases from mixtures.

#### **Reason for selection**

CO<sub>2</sub> separation membranes: Removes CO<sub>2</sub> from biogas (methane) Dehydration membranes: Removes water from bioethanol

Hydrogen membranes: Various uses including in hydrogen purification and the production of Sustainable Aviation Fuel (SAF) and biodiesels, contributing to the transition from fossil fuels and reducing usage amounts.



## **Ceramics**

UBE's silicon nitride is a high-quality powder created through an original Imide-decomposition process. This powder offers the optimal characteristics required of a raw material powder and can control microstructures, giving it high thermomechanical properties.

#### Reason for selection

Use in bearings: Bearings for renewable wind power generators and EV motors
Use in circuit boards: Contributes to more widespread EV adoption as a circuit board material in EV inverter modules.
Use in fluorescent materials: Contributes to reducing energy consumption when used in LED illumination.



# **Separators**

Separators from Ube Maxell are made using a microporous polyolefin film that features uniformly distributed microporous structures produced through a dry manufacturing process. A main component in the creation of lithium-ion batteries, such films have been extensively developed for diverse applications in wide-ranging fields over many years.

# Reason for selection

Used in next-generation vehicles (e.g. HEVs, BEVs) and energy storage systems for power stations to contribute to mitigating fossil fuel resource usage and CO<sub>2</sub> emissions



# **High-performance coatings**

UBE's high-performance coating products, which boast superior durability and eco-friendliness, include polycarbonate diols (PCDs), polyurethane dispersions (PUDs), and oxetane.

# Reason for selection

PCDs: Highly durable materials for use in polyurethane products. Help to lengthen the lifespan of urethane products.

PUDs: Water-based urethane coatings offer the benefit of environmentally friendly, low-VOC coatings. PUDs do not contain pyrrolidone or tin, so they offer manufacturers who transition to using them a reduction in the amount of harmful substances in new products.

Oxetane: Lower toxicity than conventional epoxies and acrylic compounds. Can be used for solvent-free curing products, avoiding the need for organic solvents that are a source of VOCs. Also uses less energy for the curing processes



### C1 chemicals

These chemicals are components of the electrolyte solutions used in the lithium-ion batteries installed in BEVs and PHEVs.

# Reason for selection

Contributes to reduced fossil fuel usage and CO<sub>2</sub> emissions when employed as a raw material for the electrolyte solutions used in lithium-ion batteries for BEVs and PHEVs.



# **Elastomers**

UBE's Elastomers Business produces and sells butadiene rubber (BR), a typical synthetic rubber. These products include high-cis BR synthesized using a cobalt catalyst.

# Reason for selection

Used in vehicle tires to reduce fuel consumption, contributing to lower resource usage.



# Nylon composites

We utilize the special characteristics of nylon to provide high-performance resins that meet customer demand. We actively pursue the development of composite products that utilize biomass raw materials, recycled materials, etc. as raw materials.

# Reason for selection

The development of resin products for use in EV vehicle parts enables weight reductions and contributes to reduced  $CO_2$  emissions. Furthermore, the widespread use of composites made with raw materials derived from plants, recycled materials, etc. contributes to the realization of a circular economy and to countermeasures against global warming.